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&
SEMANTIC ANSWERS TO SYNTACTIC QUESTIONS
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Let C be a grammatical category {S, NP, VP, ..} of natural language, and consider
the collection of things we may reasonably think of expressions of category C as
denoting (= being semantically interpreted as). E)&perience shows that in general
this set is not just some random collection -- rather its elements are ordered in a

certain, usually quite specific, way.

We shall be concerned in this article with several semantic generalizations
about English (and hopefully natural language in general) which build on the notion
of a semantic order. The generalizations all concern, at least as special cases, the
interpretation of NPs or quantifiers. Most of them are available in the literature,

though some more accessibly than others.

Our purpose here is expository: to make these generalizations accessible to the
non-specialist and to exhibit the sense in which semantic analysis may contribute to
the solution of problems which arise in a syntactic setting. In addition we unify the

generalizations by presenting them all in an order theoretic perspective.

1. On the notion of order
As an illustrative example consider (tensed) VPs, such as those italicized in (1):

(1) a. John laughed
b. John laughed loudly
c. John both laughed and cried
d. John either laughed or cried
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The VPs of these Ss are semantically related in some obvious ways. Extending
standard usage, the VP of (1b) "entails" that of (15), meaning that whenever
laughed loudly is true of an individual then so is laughed. One standard way to say

this is as follows:

In a given a situation o, a VP of the sort in (1) is true of some (possibly all) of
the objects we might be talking about in o. For p a VP expression write p, for the

set of things p is true of in o. Write E_, called the universe of o, for the set of things
we might be talking about in situation . (We usually omit the subscript o since we
are not comparing different situations).

And we define: a VP p entails a VP q iff for all situations o, p,c q,. So to say
that laughed loudly entails laughed is to say (omitting subscripts) that in all
situations o, laughed loudly c laughed. That is, any object that laughed loudly is

true of is an object that laughed is true of.

exercise Verify informally that both laughed and cried entails laughed and that

laughed entails either laughed or cried #

Note that laughed does not entail slipped, since there are situations in which
laughed & slipped, that is, situations in which someone laughed who didn't slip.
But there are also situations in which laughed < slipped, that is, ones in which
everyone who laughed did slip. Thus in a given situation some VP denotations

stand in the subset relation and some do not.

Now the subset relation is a basic order relation: transitive Gf Ac Band Bc C
then A c C), and antisymmeiric (A c B and Bc A = A =B). Standardly,

Def 1 A binary relation R defined on a set E is called an order relation iff

i. R is transitive
(viz. for all a,b,ce E, aRb & bRc = aRc) and

ii. R 1s antisymmetric
(viz. foralla,be E, aRb &bRa = a=b)

Note that antisymmetry rules out that distinct objects each bear the relation to the
other, but it allows that a given object bear the relation to itself. Indeed the subset

relation is reflexive, meaning that for each set A, A c A.
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And in general the order relations we are linguistically motivated to consider
below are reflexive. We often use < as a symbol denoting a reflexive order relation.
(Note e.g. that the natural < relation among numbers in arithmetic is a reflexive
order). Anticipating a more general use, we write <, for the reflexive order relation
on VP denotations defined above. (So <y; is just the subset relation as we presented
it.)

A second basic order relation is the "implication" order <g defined on possible

Sentence denotations:

Let x and y be possible S denotations (in a situation c). Then x <g y iff an arbitrary
sentence of the form if p then q is true when p denotes x and q denotes y. For
example, thinking of Ss as denoting either T ("True") or F ("False"), we see that the

< relation is completely given by:
@) T<T, FT, andF<gF.

The only case where a truth value x fails to bear the "implication" relation to a truth
value y is when x = T and y = F. So to show that x < y we must merely show that if

x =T then y = T (since if x = F then x < y no matter what truth value y is).

And as with VPs, we define: a sentence p entails a sentence q iff for all
situations o, p < q, where p and q are the respective denotations of p and q in o.

One sees by inspection of (2) that < as defined is reflexive (= for all x ¢ {T,F}, x
< x). Equally no two different truth values each stand in the <4 relation to the
other, so <4 is antisymmetric. And transitivity is checked by cases in (3). To show
that if x <y and y <5 z then x < z, for x, y, z € {T,F}, it is sufficient to consider the

choices of values for x, y, z which make the "and" clause true.

3) x &y and y 5oz X <5z ??
T T T T T T yes
F T T T F T yes
F F F T F T yes
F F F F F F yes

Our concern now is with denotations of NPs, such as those italicized in (4). Such
NPs combine with VPs to form Ss and may naturally be interpreted by functions

which map VP denotations to S denotations (the truth value of such a sentence then
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being the value that the NP function assigns to the VP denotation).

(4) a. John is asleep
b. Most students can read

¢. More students than teachers read the Times

Def 2 Now, if F and G are possible NP denotations (in a situation o) we say that I
<yp G iff for all possible VP denotations p, F(p) <g G(p). (That is, if F(p) = T
then G(p) =T).

fact The <, relation defined above is (for each o) a reflexive order relation (see
below).

And the entailment relation on NPs is defined as before: An NP A entails an
NP B iff for all situations o, A <p B, where A and B are the respective denotations
of A and of B in o.

For example, every student and some teacher entails every student since for any
VP q, if every student and some teacher q is true then, obviously, every student q is

true. And more generally,
(5) For C e (NP, VP, S} and for x,y expressions of category C,

1. both x and y entails x and

ii. x entails eitherxory #

The <yp order builds on the <g order on the set, {T,F} in which NP functions take
their values. This way of inheriting orders is fully general:

Def3 Let A be any set and let <g be a reflexive order on a set B. Then we define a
relation < on [A — B], the set of functions from A into B, as follows:

For all f,g € [A — B],
f<gifffor allb € B, f(b) <5 gb)

fact: < as defined is a reflexive order.

2. Some semantic generalizations
2.1 Constraints on interpreting lexical items

We will establish here a very non-trivial semantic constraint on the

interpretation of lexical NPs -- one that extends with some success to lexical
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expressions of other categories.

To set up the generalization let us consider first the following entailment
paradigm (cf. Aristotle).

(6) a. All socialists are vegetarians
b. Some doctors are socialists

. Some doctors are vegetarians

We understand (6) to mean that the first two Ss jointly entail the third. That is, in
any situation in which the first two are interpreted as true the third is also

interpreted as true.

Query Which NPs X can replace some doctors everywhere in (6) preserving the

entailment (changing plurals to singulars if necessary)?

NPs which satisfy the Query are called increasing. For example Mary is
increasing: if all socialists are vegetarians and Mary is a socialist then, obviously,
Mary is a vegetarian. Some other increasing NPs are given in (7), as the reader is

invited to check:

(7) a. she, this cat, more than two cats, at least one cat, some cat, every cat, the
(ten) cats, John's (ten) cats, most cats, several cats, more than half the cats,
his cat, every student's bicycle

b. at least two of the ten cats, most of John's cats, at least two thirds of the
students, more than five of John's cats
¢. John and some student, at least two teachers and more than ten students,

either a student or a teacher, most liberal and all conservative senators

To give a properly general account of these entailment facts consider the

semantic representation of (6) below (given a situation c):

(8) a. socialist c vegetarian
b. (all doctor)(socialist) =T
(all doctor)(vegetarian) =T

Generalizing from (8) we see that the function all doctor preserves the order
relation on its arguments in the sense that if p <; q then (all doctor)(p) < (all

doctor)(q). That is, all doctor is increasing as defined below:

(9) Let A and B be ordered sets and F a function from A into B.
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a. Fis increasing (= order preserving) iff for all a,a’' € A,
if a<a' then F(a) <F(a) '

b. F is decreasing (= order reversing) iff for all a,a' € A,
if a<a' then F(a) <F(a)

¢. Fis monotonic iff F is increasing or F is decreasing

And the NPs in (7) are increasing in the sense that in all situations o they denote

increasing functions. And we now state:

Gen 1:Lexical NPs are monotonic -- in fact monotonic increasing with at most a few

exceptions.

Here is a snapshot of the lexical NPs of English: they include one productive
subclass, the proper nouns: John, Mary, ..., Siddartha, Chou en Lai, ... (‘productive’
here means that new members may be freely added without changing the language
significantly). They also include listable sprinklings of (i) personal pronouns --
helhim,.. and their plurals they/them; (i) demonstratives -- this/that and theselthose;
(iii) possessive pronouns -- histhers .../theirs; and (iv) a few "indefinite pronouns" as
all in A good time was had by all, some in Some like it hot, and many and few in
Many are called but few are chosen. Some linguists would include here everyone,
everybody, everywhere, someone, somebody, somewhere; and none, noone, nobody,

nowhere, though these expressions appear to have meaningful parts.

Excluding none, noone, nobody, and nowhere, which are properly decreasing, the

lexical NPs noted above are increasing.

We shall discuss decreasing NPs in Gen 2 below. Here let us just note that the

NPs in (10) below are not monotonic.

(10) a. every student but not every teacher, every student but John, exactly five
students, between five and ten cats, no student but John, John but neither
Bill nor Sam, most of the students but less than half the teachers

b. either fewer than five students or else more than a hundred students,
approximately a hundred students, more students than teachers, exactly as

many students as teachers

Note that in any given situation the NPs in (10) will denote perfectly reasonable
functions from possible VP denotations to possible S denotations, but those functions



Semantic Order & Semantic Answers to Syntactic Questions 7

are not monotonic. Thus Gen 1 is a strong semantic claim about natural language --
many functions that are denotable by NPs in English are not denotable by lexical
NPs.

If we think of Gen 1 as a constraint on the interpretation of human languages
then it helps to explain how children learn languages quickly with limited exposure
to limited data. They must learn the meanings of the expressions they use. And
while learning the meanings of syntactically complex expressions is facilitated by
knowning the meanings of their parts, learning the meanings of lexical items is not
facilitated in this way. But it is facilitated if the child need consider only monotonic

(increasing) denotations for his lexical NPs.

For further generalizations concerning constraints on denotations of lexical

items see Keenan (1987). We turn now to our second generalization.
2.2 Negative polarity items

To characterize the set of expressions judged grammatical by native speakers of
English, we must distinguish the grammatical expressions (11a) and (12a) from the
ungrammatical (11b) and (12b).

(11) a. John hasn't ever been to Moscow
b.*John has ever been to Moscow

(12) a. John didn't see any birds on the walk

b.*John saw any birds on the walk

Npi's (negative polarity items) such as ever and any above, do not occur freely;
classically [Klima 1964] they must be licensed by a "negative" expression, such as

n't (= not). But observe:

(13) a. No student here has ever been to Moscow
b.*Some student here has ever been to Moscow

(14) a. Neither John nor Mary saw any birds on the walk
b.*Either John or Mary saw any birds on the walk

(15) a. None of John's students has ever been to Moscow
b.*One of John's students has ever been to Moscow

The a-expressions here are grammatical, the b-ones are not. But the pairs differ

with respect to their initial NPs, not the presence vs. absence of n't.



8 _ Edward L. Keenan

The linguistic problem: define the class of NPs which license the npi's, and
state what, if anything, those NPs have in common with n'tinot.

A syntactic attempt to kill both birds with one stone is to say that just asn'tis a
"reduced" form of not so neither...nor... is a reduced form of [not (either...or...)], none a
reduction of not one, and no a reduction of not a. The presence of n- in the reduced
forms is thus explained as a remnant of the original not. So on this view the
licensing NPs above "really" have a not in their representation, and that is what

such NPs have in common with n’t. Moreover NPs built from not do license npi's:

(16) Not a single student here has ever been to Moscow
Not more than five students here have ever been to Moscow
However, as Ladusaw [1983] has taught us, this solution is insufficiently
general: The initial NPs in the a- sentences below license npi's; those in the b-

sentences do not. But neither present reduced forms of not.

(17) a. Fewer than five students here have ever been to Moscow
b. *More than five students here have ever been to Moscow
a. At most four students here have ever been to Moscow
b. *At least four students here have ever been to Moscow
a. Less than half the students here have ever been to Moscow

b. *More than half the students here have ever been to Moscow

An hypothesis which does yield correct results is a semantic one discovered by
Ladusaw (1983), building on the earlier work of Fauconnier (1979). (See also Zwarts
(1981)).

Gen 2 The Ladusaw-Fauconnier Generalization (LFG)

Negative polarity items occur within an argument of a monotonic decreasing

function

To check that an NP is decreasing verify that (18) is valid when substituted for
X.

(18)  All linguists can dance
X can dance

- X is a linguist (are linguists)

This test shows that the NPs in (13) - (17) which license npi's are decreasing

whereas those that do not are not.
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Further the LFG yields correct results on structures like (19) and (20) below, not

considered by Ladusaw or Fauconnier.

(19) No player's agent should ever act without his consent
*Every player's agent should ever act without his consent

Neither John's nor Mary's doctor has ever been to Moscow

(20) None of the teachers and not more than three of the students have ever been

to Moscow

(19) draws on the fact that possessive NPs, ones of the form [X's N] such as
John's doctor, inherit their monotonicity from that of the possessor X. Viz, X's
doctor is increasing (decreasing) if X is. (20) testifies that conjunctions (and

disjunctions) of decreasing NPs are decreasing.

Finally we may observe from a linguist's perspective that the LFG is quite
general. Denotation sets for most categories of expression in English are ordered
(Keenan & Faltz, 1985) and thus most expressions of functional types are
classifiable as increasing, decreasing or non-monotonic. We may expect then to find

npi licensers in many categories, and we do.

A crucial case of course is that of ordinary negation not (n't). In general it
denotes a complement operation in the set in which its argument denotes. E.g. at
the VP level didn't laugh denotes E - laugh, the set of objects under discussion that
are not in the laugh set. So not (n't) maps each subset p of E to E - p. And one
shows easily that if p c q then E-q < E - p. Which is just to say that the

denotation of not (n'f) is decreasing.

Thus the LFG finds a non-trivial and independently verifiable property which

NPs like no student have in common with simple negation.
For further refinement see Nam (1992) and Zwarts (1990).
2.3 Partitives and definite NPs

We consider partitive NPs like at least two of the students, all but one of John's
children and most of those questions. They appear to be of the form [DET, of NP],
and more generally [DET, (of NP)X], like more of the students than of the teachers.

The linguistic issue: For which choices of DET, and NP is the sequence
(DET, of NP) a grammatical NP? Some partial answers:
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(21 a. [at least two of X] is a grammatical NP when X = the boys; the ten or more
boys; these boys; these ten boys; John's cats; John's ten or more cats; my cats;
the child's toys; that child's best friend's toys

b. at least two of X is ungrammatical when X = each boy; all boys; no boys; the
boy; some boys; most boys; exactly ten boys; ten boys; no children's toys; most
of the houses; at least nine students, more students than teachers, five of the

students

Whether an NP of the form DET; + N occurs grammatically in the partitive
context [two of __ ] depends significantly on its choice of DET,. DETs acceptable
here were first characterized semantically in Barwise and Cooper [1981]. We build

on their analysis below.

Note that we might naively refer to NPs which occur naturally in these partitive
contexts as "definite plural'. So what is at issue is how to characterize that notion.
We propose a semantic characterization. One problem that must be correctly
handled here is the following: by various criteria NPs like those in (22) are definite
plural, but, as indicated, they are at best problematic in (+count) partitive contexts,
(23).

(22) a. the student and the teacher
b. this student and that student
c. John and Bill

(23) a. *?all/both of the student and the teacher
b. *most of this student and that student
¢. *one of John and Bill

We respond to this problem below by characterizing the NPs which occur in
(+ count) partitive contexts in terms of the Det;s used to build them, rather than

directly in terms of denotational properties of the NP itself.

Now observe that Det,s like most, every, more than ten, at least and not more
than ten, ... combine with common nouns to form NPs. Semantically then we may
interpret them by functions mapping common noun denotations to NP denotations.
We shall take common noun denotations to be sets of objects (e.g. in a situation o
with universe E, the students in E are the objects in the set denoted by student.

Here are some illustrative examples in an obvious notation:
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(24) some(p)(Q =Tiffpnqz &
every(p)(@ =Tiffpcq
(the ten)(p)(@) =Tiff Ipl =10 and pcq
most®)(qQ)=Tif [pnql > Ip-ql

So e.g. most p's are q’s is true iff the number of p's who are 's is greater than the

number of p's who are not ¢'s.

To avoid certain trivial cases in our characterization of "definite plurals" we note
the (largely obvious) definitions of trivial functions: An NP function F is non-trivial
in o iff there are subsets q,q"' of E such that F(q) = T and F(q") = F. A Det,
denotation g is non-trivial in o iff for some p c E, g(p) is non-trivial. And a Det;
expression g is non-trivial iff for some situation o, the denotation g of g is non-trivial

n o.

Lastly, an NP function F is said to be a principal filter iff for some s ¢ E, F(q) =
T iff s € q. In such a case F is said to be generated by s.

For example in a situation with many cats the NP the cats denotes the filter
generated by cat. So does the NP the two or more cats. If John has exactly two cats
then John's two cats is the filter generated by cat which John has. We now

propose an answer to our query:

Def4 A Det, expression g is semantically definite iff g is non-trivial and for each
situation ¢ and each p c E such that g(p) is non-trivial, g(p) is the filter
generated by some non-empty s ¢ p. If s always has at least two elements g

is called definite plural.
(25) Some semantically definite plural Det,s

the ten, ten two or more, thepl, John's ten, John's two or more, John's_;, these,

pl’
these ten, these ten or more, John and Bill's ten, ...

We might note here that every is not semantically definite, and that the Det,'s

the one, John's one are semantically definite but not definite plural.

Gen 3 An NP is grammatical in plural partitive contexts iff it is of the form [d N]
where d is semantically definite plural or it is a conjunction or disjunction of
such NPs.

We note that NPs in (22) such as this student and that teacher are excluded by
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this definition.
2.4. Existential NPs
Consider Existential There (ET) Ss like those in (26):

(26) There wasn't more than one student at the party
There are more dogs than cats in the garden
There was noone but John in the building at the time

Such Ss are typically used to affirm, deny or query the existence of objects (e.g.
students) with a specified property (e.g. being at the party). NPs like more than one
student which naturally occur in such Ss will be called existential NPs. So NPs
italicized in (27) are not existential, as the Ss are either ungrammatical or assigned

an unusual interpretation.

(27) *There wasn't John at the party
*There were most students on the lawn

*?There wasn't every student in the garden

The linguistic problem: define the set of existential NPs in English. Barwise
& Cooper (op cit) again were the first to propose a semantic solution to this problem,
and as in the previous case, located the solution in the nature of the DET;s rather
than the NPs themselves. The solution presented below is original here but draws
on theirs and on Keenan [1987b]. See Reuland and ter Meulen [1987] for extensive

discussion of the empirically problematic issues here.

We construct the existential NPs from ones built from intersective Determiners.
To say that more than ten is intersective is to say that we can decide whether
more than ten p's are q's just by checking p n q, the p's who are g's. We need not
for example concern ourselves with p's which fail to be q's, as we must when

checking whether all p's are ¢'s.

Equally to say that a two place determiner such as more...than... is intersective
is to say that we can decide whether more students than teachers are vegetarians is
true just by checking the students who are vegetarians and the teachers who are
vegetarians. We need know nothing about students or teachers who fail to be

vegetarians. Formally,

Def5 A function g mapping k-tuples of sets to possible NP denotations is
intersective iff for all k-tuples (p,,...,p,) and all sets q,q' if p; » q =pj n ¢, all
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1<i <k, then F@py,....p)(@ = F@y,....p)(@)-

Gen 4 NPs which occur naturally in ET contexts are ones built from intersective
Dets or they are boolean compounds (in and, or, not, neither...nor...) of such
NPs.

Since (more than ten)(p)(q) = 1 iff |p n ql > 10 we see that it is intersective
and thus more than ten cats is, correctly predicted to occur naturally in ET contexts.

Some further examples of intersective DETs:

(28) some, a, exactly ten, fewer than ten, not more than ten, no, between five and
ten, at most ten, at least two but not more than ten, just finitely many,

uncountably many, no...but John, more male than female

One checks that NPs built from these Dets occur naturally in existential Ss, as
do their boolean compounds. Equally one proves easily that boolean compounds (in
and, or, and not) of intersective Dets are intersective. So we predict that NPs such

as those in (29) occur naturally in ET contexts, a correct prediction.
(29) at least two and not more than ten cats, either exactly two or exactly four cats

By contrast the Det,s displayed below are not intersective and do not naturally

occur in existential contexts:

(30) most, all, all but two, every...but John, two out of three, less than half the, at

most twenty per cent of the, the ten, John's ten, these, my

Equally one checks that cardinal comparative DETs like more...than...,
fewer...than..., exactly as many...as..., more than twice as many...as..., as in (Ic) are
intersective functions of type ((1,1),1). E.g. whether fewer students than teachers are
vegetarians is true is determined by the sets student N vegetarian and teacher n
vegetarian. Thus we correctly predict that There are fewer students than teachers

in the garden is natural.

A closing remark: Our purpose here has been to present generalizations which
rely on the underlying order in denotation sets. It may not be obvious here however
just how the notion of an intersective Det is built specifically on the underlying
order. That is because we took the denotations of common nouns and VPs as sets
because of the familiarity of this notion. But we could essentially without change
have taken Ns and VPs to denote functions from E into {T,F}. But then would could

not have literally referred to "intersections" of such functions.
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So the crucial point here is to recognize that intersection in set theory is
characterizable purely order theoretic terms. Specifically p » q is the greatest lower
bound of {p,q}, where that notion is defined for ordered sets in general as follows:

Def 6 Where <1is an order relation on a set A, and K Cc A,
a. an element o € A is a lower bound (Ib) for K iff for all k € K, a <k.
b. « is a greatest lower bound (glb) for K iff
(D aisalbfor K, and
@) for all Ibs B for K, B< a.
c. If a subset {x,y} of B has a glb, it is noted (x A y).

fact The orders we have considered, e.g. <. for C € {S, NP, VP} are ones in which

for all x,y in the set, {x,y} has a glb.

Then the properly general definition of (one place for simplicity) intersective

Det, functions would be:
(31) g is intersective iff for all p, p', q, q'
ifprq = p'Aq' then gP)q = g®)(Q)
In this way we see that the notion of intersectivity is built on the underlying order.

Indeed the fact above enables us to appreciate a final linguistic generalization,
much elaborated in Keenan & Faltz (1985):

Gen 5 For x,y expressions of category C, the expression x and y is interpreted as the
greatest lower bound of the denotations of x and of y. In other words, the
common meaning that and in all its uses is as a greatest lower bound former.

(Similarly or is a least upper bound former).

Using Gen 5 then we account for the common meaning of and in (many of) its
diverse occurrences without having to say that the non-sentence level occurrences
are derived from coordinate Ss by some kind of reduction rules, ones that are of
necessity non-paraphrastic given that e.g. Exactly two students both came early and
left late is not a paraphrase of Exactly two students came early and exactly two
students left late.
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In conclusion: We have exhibited several semantic generalizations about
English which are defined in terms of the underlying semantic order on the
denotations of expressions of a fixed category. Several of these generalizations
provide a reasonable (but never perfect) answer to queries that were first raised in a

purely syntactic context.



16 ‘ Edward L. Keenan
Bibliography

Barwise, J. and R. Cooper (1981) 'Generalized quantifiers and natural language' in
Linguistics and Philosophy 4. 1981; 159 - 219

Fauconnier, G. (1979) 'Implication Reversal in Natural Language' in F.Guenthner
and S. Schmidt (eds) Formal Semantics for Natural Language 1979, Reidel

Keenan, E.L. (1987) 'Lexical Freedom and Large Categories' in Studies in Discourse
Representation Theory and the Theory of Generalized Quantifiers d.
Groenendijk et al (eds)

. (1987b) 'A semantic definition of 'indefinite NP' ' in Reuland and ter Meulen
(1987), pp. 286 -317

Keenan, E.L. and L. Faltz Boolean Semantics for Natural Language Reidel 1985

Klima, E. (1964) 'Negation in English' in J.A. Fodor and J.J. Katz (eds) The
Structure of Language Prentice-Hall

Ladusaw, W. (1983) 'Logical Form and Conditions on Grammaticality’ in
Linguistics and Philosophy 6, pp.389-422.

Nam, S. (1992) Another type of Negative Polarity Item ms. Dept. of Linguistics,
UCLA

Reuland, E.J. and A. ter Meulen (1987) The Representation of (In)definiteness MIT

Press
Zwarts, F. (1981) 'Negatief polaire Uitdrukkingen I.' Glot vol 4. pp. 35 - 132

(1990) 'The Syntax and Semantics of Negative Polarity' in Views on the

Syntax-Semantics Interface I1, S. Busemann (ed) to appear.



	semantic order and semantic answers to syntactic questions odd
	semantic order and semantic answers to syntactic questions even.pdf
	semantic order and semantic answers to syntactic questions odd
	semantic order and semantic answers to syntactic questions even
	semantic order and semantic answers to syntactic questions odd
	semantic order and semantic answers to syntactic questions even
	semantic order and semantic answers to syntactic questions odd
	semantic order and semantic answers to syntactic questions even
	semantic order and semantic answers to syntactic questions odd
	semantic order and semantic answers to syntactic questions even
	semantic order and semantic answers to syntactic questions odd
	semantic order and semantic answers to syntactic questions even
	semantic order and semantic answers to syntactic questions odd
	semantic order and semantic answers to syntactic questions even
	semantic order and semantic answers to syntactic questions odd
	semantic order and semantic answers to syntactic questions even

